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Abstract Pollinator importance, the product of visitation

rate and pollinator effectiveness, is a descriptive parameter

of the ecology and evolution of plant–pollinator interac-

tions. Naturally, sources of its variation should be

investigated, but the SE of pollinator importance has never

been properly reported. Here, a Monte Carlo simulation

study and a result from mathematical statistics on the

variance of the product of two random variables are used to

estimate the mean and confidence limits of pollinator

importance for three visitor species of the wildflower, Si-

lene caroliniana. Both methods provided similar estimates

of mean pollinator importance and its interval if the sample

size of the visitation and effectiveness datasets were

comparatively large. These approaches allowed us to

determine that bumblebee importance was significantly

greater than clearwing hawkmoth, which was significantly

greater than beefly. The methods could be used to statis-

tically quantify temporal and spatial variation in pollinator

importance of particular visitor species. The approaches

may be extended for estimating the variance of more than

two random variables. However, unless the distribution

function of the resulting statistic is known, the simulation

approach is preferable for calculating the parameter’s

confidence limits.
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Introduction

Beginning with Stebbins’ (1970) assertion that floral traits

evolve in response to the most effective and abundant

pollinators, pollination ecologists have had an interest in

quantifying relative pollinator importance, or the product of

visitation frequency and pollinator effectiveness, and com-

paring it across visitor classes. The visitation component is

most often measured as a proportion or percent of total visits

(e.g., Larsson 2005; Wiggam and Ferguson 2005; Sahli and

Conner 2007) but is also measured as a rate (Bloch et al.

2006; R. J. Reynolds, C. B. Fenster and M. R. Dudash,

unpublished data), i.e., number of visits per flower, plant or

inflorescence per unit time. Pollinator effectiveness may be

measured as per visit pollen grain deposition (e.g., Primack

and Silander 1975; Fenster 1991; R. J. Reynolds, C. B.

Fenster and M. R. Dudash, unpublished data) or fruit or seed

set (e.g., Schemske and Horvitz 1984; Kandori 2002; Wig-

gam and Ferguson 2005) or even progeny germination rates

(Herrera 2000). As a product of visitation frequency and per

visit pollen grain deposition, pollinator importance is a

measure of a pollinator’s total transfer of pollen to the

stigmatic surface per unit time. Thus, pollinator importance

can suggest the relative strength of the positive effects a

pollinator can have on the plant partner (Thomson 2003),

and as a measure of the fitness consequences of pollinator

service it could indicate which pollinators are likely sources

of natural selection on plant traits. For a given plant species

relative pollinator importance is useful for interpreting

pollination syndromes (Faegri and van der Pijl 1979) and
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may help resolve the extent of ecological specialization

(Fenster et al. 2004) of a plant on a subset of a diverse

pollinator assemblage (Robertson 1928; Waser et al. 1996;

Ollerton 1996; Olesen and Jordano 2002).

Waser et al. (1996) inaugurated a continuing (Johnson

and Steiner 2000; Fenster et al. 2004; Waser and Ollerton

2006) controversy among pollination ecologists by criti-

cizing the pollination syndrome as the dominant theme

explaining the relationship between flower forms and their

visitors and determined the syndrome concept had poor

predictive power. Since pollinator importance is one way to

assess visitors as pollen grain vectors, it needs to be esti-

mated efficiently and accurately to determine which of the

amalgam of visitors are pollinators (Ollerton 1996). How-

ever, nearly every study conducted to date fails to present

error estimates of pollinator importance. Therefore, we

perceive a need to explore the inherent statistical and

practical issues many researchers face when measuring the

importance of a pollinator.

There are at least three statistical approaches to esti-

mating the mean and variance of a product of random

variables, some of which have been successfully applied to

studies of demography (e.g., Brown et al. 1993) and mark–

recapture population estimation (e.g., Hestbeck et al.

1991). First, the delta method may be used to approximate

the variance of the product using the Taylor series expan-

sion (Lynch and Walsh 1998). A simpler method of

computing the variance of a product was developed by

Goodman (1960) where he presents the exact formula for

the variance of the product of two and three independent

random variables. Furthermore, he comments on the effi-

ciency of the product of sample means estimator under two

different sampling schemes: (1) when observations are

made separately (e.g., visitation and effectiveness), and (2)

when the sample observations may be paired producing

one dataset of products (e.g., pollinator importance). He

proves that the mean of the product is more efficiently

estimated (smaller variance of the mean) when the indi-

vidual sample means are used to estimate the mean of the

product (approach 1) rather than if the product is measured

directly and the mean of the product estimated from the

observations (approach 2). A third method of estimating

pollinator importance is to construct its confidence interval

by using computer intensive simulations from raw datasets

of pollinator visitation rate and effectiveness. The main

advantage of this approach is in avoiding the distributional

assumptions involved with calculating confidence intervals

for population parameters using estimates from the delta

method or Goodman exact variance formula. For example,

the simulation is preferable when the probability distribu-

tion of the estimate of mean importance is unknown and/or

when the number of variables is greater than two (see

Materials and methods).

The primary objective of this paper is to obtain point

and interval estimates of pollinator importance using its

components, visitation rate and effectiveness. Because

Goodman (1960) showed that approach 1 produces an

estimator with smaller variance, we use this approach to

develop a computer intensive simulation method that is

novel to studies of pollinator importance: bootstrap the

individual visitation and effectiveness datasets, take the

bootstrap means and then multiply them to get the

resulting product, repeating as many times as possible. In

this case, the upper and lower 95th bootstrap confidence

intervals are taken from the sampling distribution of mean

importance values to estimate the variation in pollinator

importance. We also hand calculate the mean, variance

and confidence limits of pollinator importance using

Goodman’s (1960) mathematical statistics result regarding

the formula for the exact variance of the product of two

random variables and compare these estimates with esti-

mates from the simulations. We demonstrate the use of

these methods with field-collected data of pollinator vis-

itation rate and pollen grain deposition on stigmas for

Silene caroliniana (Caryophyllaceae).

Materials and methods

Silene caroliniana is a protandrous herbaceous perennial

wildflower of the eastern United States. At our study site

near the Chesapeake & Ohio Canal National Park’s Billy

Goat Trail, Montgomery County, Maryland, it blooms from

mid April to early May. Its corolla is tubular and variable in

color, ranging from white to dark pink, but is most

commonly light pink. The most common visitors are bum-

blebees (Bombus spp.), clearwing hawkmoths (Hemaris

sp.), and beeflies (Bombyliidae), with additional infrequent

to rare visits by small bees such as halictids, and lepidopt-

erans such as cabbage whites (Pieris rapae) and zebra

swallowtails (Eurytides marcellus).

Data collection

To quantify the visitation component of pollinator impor-

tance, we estimated the parameter mean visitation rate (no.

visits per plant per hour), for each of the three common

invertebrate visitor species during the 2006 field season,

using direct observations of 46 separate patches (each

patch = one experimental unit) of S. caroliniana individ-

uals in a natural population. Visitation rate is defined here

as the sum of visits to all the plants in a patch divided by

the number of plants in the patch, and then divided by the

time of observation per plant, thus number of visits per

plant per hour. Observations were made of five to ten plants

per patch for 20–30 min, which was appropriate given the
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relatively frequent visits and ease of view of a large

number of plants. During each observation the count of

visits to each plant and the visitor species were recorded.

Every effort was made to keep the experimental units

independent, by sampling across the entire phenology and

observing many separate patches in a given day.

The pollinator effectiveness component of pollinator

importance was estimated during the 2006 field season by

measuring single-visit pollen grain deposition for each of

the three most common visitor species. About 20 plants of

the same population used for the visitation study were

located and securely caged with fine-mesh screening prior

to flowering. After the pollinator-exclusion cages were

removed, female-phased flowers were identified and

flowers were observed until a visit was noted. Immedi-

ately following the visit the flower was collected and its

stigmas were fixed on microscope slides with fuschin

glycerin jelly (Kearns and Inouye 1993). The number of

pollen grains on the stigmas was counted under light

microscopy at 409 power. Unvisited stigmas were col-

lected as controls, i.e., pollen grain deposition from

sources other than insects.

Data analyses (linear models)

In addition to the major focus described below of quan-

tifying variation in pollinator importance, we also aimed

to gain a greater mechanistic understanding of why dif-

ferent pollinators may differ in the components of

pollinator importance. Thus, linear models (SAS Institute

2004) were used to determine if mean pollen grain

deposition (pollinator effectiveness) and visitation rate

(pollinator visitation) each vary according to visitor spe-

cies. Pollen grain deposition (PROC GLM) or visitation

rate (PROC GENMOD) were modeled as response vari-

ables and visitor species as the predictor variable. In the

case of pollen grain deposition, an additional treatment

level, no visitor (control), was used in the model. The

pollen grain deposition model was run with square-root-

transformed data, which made the distribution of the

response variable more symmetric.

A Poisson regression model was used to model the

count variable, number of visits to a patch of plants in a

half hour, which ranged between 0 and 17 with a mode of

0. In this model the number of visits was the response

variable, species was the predictor, the link function was

log and an overdispersion parameter was used and esti-

mated (3.7) as the Pearson v2 divided by its df (135). The

model was modified by specifying an offset variable,

ln[number of plants 9 time(hours) of observation]. The

offset variable scales the count-type response data by the

time of observation and the number of plants in each

patch since actually mean visitation rate was the

parameter of interest. Because visits of the three species

were observed within each experimental unit, the log-

linear model was further refined to account for their

potential correlation (repeated statement/corr option

unstructured). In using a model without this correlation or

without the correction for overdispersion we would have

reported all visitor species were significantly different in

visitation rate (bumblebee [ hawkmoth [ beefly; analysis

not shown). Least squares means were used to estimate

the mean values of the predictor variables in both the

GLM and GENMOD procedures. In both procedures

a priori contrasts were used to determine if mean visita-

tion rate differed between species or, for the case of

pollen grain deposition, whether each species differed

from the control (no visitor). For both models the per

contrast type 1 error rate was controlled by holding the

experiment-wise a-level to 0.05.

Data analyses (simulations and variance calculations)

A visual basic routine in Microsoft Excel was developed

and used to simulate mean importance values and 95%

bootstrap confidence limits. Simulations were done sep-

arately for each visitor species. To correct for pollen on

stigmas from sources other than pollinators, the pollen

deposition dataset was modified by subtracting the mean

number of pollen grains on control stigmas (n = 46)

from each observation. If the resulting observation was

negative it was replaced with zero. The visitation dataset

was left unmodified. For each species it consisted of 46

observations of visitation rate, one from each patch of

plants.

To begin, the visitation and deposition datasets were

randomly sampled to generate bootstrap samples of visi-

tation and effectiveness each with the same number of

observations as the raw datasets. Next, the sample means

and variances were calculated, pollinator importance was

taken as the product of the means and its variance using the

formula described below. A single trial consisted of

repeating the above procedure 10,000 times thus generating

a distribution of 10,000 mean importance values. After

a trial was complete the average of the 10,000 mean

importance values and their variances were taken, the

dataset was sorted in ascending order, and the 250th and

9,750th simulated observations of mean importance were

taken as the estimates of the upper and lower 95% boot-

strap confidence limits. In order to investigate the stability

of the estimates the whole process was repeated 50 times,

and the coefficients of variation (CV) of the mean and

upper and lower confidence limits across the 50 trials were

calculated. The final mean and upper and lower 95%

bootstrap confidence limits were taken as the averages

across the 50 trials.

Oecologia (2008) 156:325–332 327

123



We used the result of Goodman (1960) to make hand

calculations of the mean and unbiased pollinator impor-

tance variance estimates. In general, using probability

theory and the algebra of random variables the mean and

variance of the product of two independent (i.e., COVX, Y =

0) random variables, Z = XY, are E(Z) = lxly and VarðZÞ ¼
ðlXÞ2r2

Y þ ðlYÞ2r2
X þ r2

Xr2
Y where EðXÞ ¼ lx;EðYÞ ¼

ly; VarðXÞ ¼ r2
x ;VarðYÞ ¼ r2

y (Goodman 1960). Taking

the random samples fX1;X2; :::;Xnx
g and fY1; Y2; :::; Yny

g;
an unbiased estimate of the variance of the product of

means, lx ly is Vârð�x�yÞ ¼ �x2s2
y=ny þ �y2s2

x=nx � s2
xs2

y=nxny

where �x; �y; s2
x ; s

2
y ; nx; ny are the respective means, unbiased

variances and sample sizes of the two datasets (Goodman

1960). Note that this method does not require any model

regarding the probability distribution of the sample obser-

vations or sample means. The assumptions are independent

observations and there is no covariance between the ran-

dom variables, which may be difficult to satisfy under field

conditions.

In order to put a probability on the approximate interval

containing the population mean importance using the exact

variance formula we need to know the distribution of its

statistic. If large random samples (e.g., [30) are taken of

each variable then the means of the variables may be

assumed approximately normal, regardless of the variables’

underlying distribution. However, even for large samples

of visitation and effectiveness where the means may be

assumed normal, a confidence interval for the population

mean importance value may not be the sample mean ±

1.96 times the SE. Craig (1936) published the distribution

function of a product of normal random variates, and under

most circumstances it is not normal. Fortunately compu-

tational methods for computing the probabilities (Cornwell

et al. 1978) and statistical tables (Meeker et al. 1981) have

been produced. The product of normals distribution,

gZ¼XY zj lx

rx
; lY

rY
; qXY

� �
; has three parameters, the correlation,

qXY, and the ratios of the means to SDs of each variable,

lX=rX and lY=rY (Craig 1936; Meeker et al. 1981). The

tables of Meeker et al. (1981) were used to directly cal-

culate an approximate 95% confidence interval for the

population mean importance using as parameters the esti-

mates of ratios of the sample means to SEs to find the

appropriate critical values. Bivariate linear interpolation

(see Meeker et al. 1981) was used to find critical values

corresponding to the appropriate parameter estimates.

The approximate 95% confidence interval is

P Pa¼0:025\
�x�y�lxlyffiffiffiffiffiffiffiffiffiffiffiffi

Vârð�x�yÞ
p \Pa¼0:975

� �
� 0:95; or ð�x�y�Pa �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vârð�x�yÞ

p
Þ where Pa¼0:025;0:975 are the critical values

corresponding to the 0.025 and 0.975 percentiles of the

product of two normals distribution, and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vârð�x�yÞ

p
is the

estimate of the SE of pollinator importance from the exact

variance formula (Goodman 1960).

Comparisons were made of the simulated importance

values, variances and 95% bootstrap confidence limit

estimates to the mean, variance, and confidence limits of

importance values calculated directly using estimates from

Goodman’s (1960) exact variance formula. If the point

estimates differ substantially then the approximate 95%

confidence limits using the mean and SE estimates from the

exact variance formula may be inaccurate. Such a dis-

crepancy may be due, for example, to violation of the

methods’ assumptions. For each visitor species, the relative

difference of the point or interval estimates from

the simulated ones was calculated as % difference ¼
EstSim�EstDirect

EstSim

� �
� 100:

Results

Visitation and pollen grain deposition

Overall, the linear models show bumblebees to be the most

frequent and hawkmoths and bumblebees the most effec-

tive pollinators of S. caroliniana. The mean (±1 SE)

visitation rate for bumblebees, beeflies, and hawkmoths

based on the n = 46 observation periods was 1.1 (0.92,

1.2), 0.11 (0.086, 0.15), and 0.25 (0.18, 0.33), respectively.

Thus, bumblebee least squares mean visitation rate was 4.4

times greater than hawkmoth’s and 10 times greater than

beefly’s and these differences were statistically significant

(bumblebee[hawkmoth, v2 = 16.54, df = 1, P \ 0.0001,

bumblebee [ beefly, v2 = 21.52, df = 1, P \ 0.0001).

Visitation rate of hawkmoth pollinators was 2.3 times

greater than beefly’s but this difference was not significant

(hawkmoth = beefly, v2 = 2.95, df = 1, P = 0.0858).

Hawkmoths and bumblebees were the most effective

pollinators. The mean (±1 SE) effectiveness for bumble-

bees, beeflies and hawkmoths based on the n = 64, n = 9,

and n = 29 samples of pollen deposition were 231 (210,

253), 43.3 (25.4, 65.9), and 249 (204, 296), respectively.

After adjusting the mean pollen grain deposition values by

subtracting the mean pollen grain deposition from control

stigmas (no visits, n = 46), on average hawkmoth and

bumblebee pollinators deposited 9.2 times and 8.4 more

pollen grains than beefly pollinators. Pairwise contrasts

demonstrated that mean pollen grain deposition by hawk-

moths and bumblebees was not significantly different

(F = 0.24, df = 1,144, P = 0.6241). Based on the polli-

nator effectiveness data, beeflies were an insignificant

pollinator compared to hawkmoths and bumblebees.

Results from the pairwise means comparisons indicated

that bumblebees (F = 103, df = 1,144, P \ 0.0001) and
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hawkmoths (F = 76.8, df = 1,144, P \ 0.0001) but not

beeflies (F = 1.31, df = 1,144, P = 0.2541) deposit sig-

nificantly more pollen per visit than there were pollen

grains on stigmas in the absence of visitors.

Simulations and exact variance formula

The corrected effectiveness data set was used in the sim-

ulations and the Goodman exact formula estimate. The

adjusted effectiveness data set of bumblebees, beeflies, and

hawkmoths resulted in a mean (variance, n) pollen grain

deposition of 246 (3.55 9 104, n = 64), 47.4 (7.79 9 103,

n = 9), and 291 (4.92 9 104, n = 29). In addition, the

means for the visitation rate were the same as those used

for the linear models, and the variances that were used for

the Goodman exact variance formula were 1.26, 0.0444,

and 0.288 for bumblebees, beeflies and hawkmoths,

respectively. The simulation results demonstrated that

bumblebees were the most important pollinators, hawk-

moths were of intermediate importance, and beeflies the

least important (Fig. 1). Therefore, in the single season of

2006, a high visitation rate by bumblebees and moderate

rate of pollen deposition made them more important than

the less frequent but slightly more effective hawkmoths.

Mean bumblebee importance (277) was greater than the

mean value (127) of the 97.5th percentile of mean hawk-

moth importance after 50 simulation trials. Thus,

bumblebees had significantly higher average importance

than hawkmoths (73). Although hawkmoth visitation rate

was not statistically different from beefly’s, the high

hawkmoth effectiveness increased its pollinator importance

over beefly’s. Average beefly importance (5.95) was lower

than the mean value of the lower 2.5th percentile of both

bumblebee (190) and hawkmoth (31.2) after 50 simulation

trials. The simulations exhibited remarkable stability across

the 50 trials for all species. In particular the CVs for mean,

lower and upper confidence limits for bumblebee impor-

tance were all less than 1%.

It appeared the precision of the estimates between the

two methods was associated with the sample size of the

effectiveness dataset. The simulated means, variances and

confidence intervals were most similar to the estimates

computed using the exact variance formula for the bum-

blebees (n = 64 observations) and most different for

beeflies (n = 9 deposition observations). There appeared to

be no pattern of either method over or underestimating the

point or interval estimates of the other (Fig. 1). For

example, the upper and lower bumblebee bootstrap confi-

dence intervals were less than (-2.65%, -3.55%

difference, respectively) the confidence interval from the

estimates using the exact variance formula. The simulated

hawkmoth upper confidence limit was less than (-7.09%)

and the lower confidence limit was greater than (10.3%)

the estimates using the exact variance formula.

Discussion

Here we demonstrate two methods, novel in their appli-

cation to pollinator importance, of estimating the mean and

variance for a product of two random samples taken sep-

arately. Both methods yielded the same conclusion: using

real visitation rate and pollen grain deposition data for

three visitor species to Silene caroliniana in the 2006

flowering season we find that bumblebee importance is

significantly higher than hawkmoth’s, which is signifi-

cantly higher than beefly’s. In fact, in no case did a

pollinator’s upper 95th confidence limit overlap another’s

lower 95th confidence limit for pollinator importance. The

major advance of this paper is that the simulation method

and/or the exact variance formula may be used to properly

estimate the variance of pollinator importance thereby

enabling pollination ecologists to test hypotheses of sour-

ces of variation in pollinator importance or any metric that

involves the product of means of two random samples.

First we discuss our results pertaining to the pollination

system of S. caroliniana, and then we discuss assumptions

and limitations of the methods in estimating pollinator

importance and its confidence interval.

Important pollinators

The simulated point and interval estimates statistically

show that pollinators are significant sources of variation in

pollinator importance. The separate linear models of the
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Fig. 1 Average pollinator importance of bumblebees (diamonds),

beeflies (squares), and hawkmoths (triangles) as pollinators of Silene
caroliniana and their 95% confidence limits estimated using two

approaches, simulations and the exact variance formula. Values of

means next to symbols
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visitation and effectiveness data offer suggestions as to

why the importance values differ among the visitors. For

example, the difference between bumblebees and hawk-

moths importance was due to the quadruple visitation rate

of bumblebee because the mean effectiveness was not

significantly different. Hawkmoths were exceedingly more

important than beeflies, more because of its very high

relative effectiveness than its visitation rate, which were

over twice as high as beeflies, but the difference was not

statistically significant. However, the linear models of the

component variables, visitation and effectiveness, do not

sufficiently demonstrate pollinator importance varies

among visitors because the SE of pollinator importance is a

function of the mean and variance of both samples.

Pollinator importance as the product of visitation rate and

pollen grain deposition can provide some biological insight

into the dynamics of pollen transfer. Given that an S. car-

oliniana flower in the female phase contains about 30 ovules

(R. J. Reynolds et al., unpublished data) bumblebees were

delivering pollen at a rate resulting in slightly less than a

10:1 ratio of pollen grains to ovules every hour. It is likely

this rate of pollinator service is sufficient to effect maximum

seed set per flower since multiple studies have demonstrated

seed set as a saturating function of pollen grain deposition

on stigmas (Silander and Primack 1978; Mitchell 1997;

Brown and Kephart 1999). With 25% the pollinator

importance of bumblebees, on average, it would take the

hawkmoths 4 h to achieve a similar level of pollinator ser-

vice. Thus while our approaches clearly demonstrate that

bumblebees were more important pollinator than hawk-

moths at our study site in 2006, it is probable that both

pollinators were contributing substantially to the stigmatic

pollen load. Thus we suggest that bumblebees and hawk-

moths were both important pollinators.

The difference in visitation rate determines the signifi-

cant variation of pollinator importance between bumblebees

and hawkmoths. Although components of effectiveness

may be expected to differ among years (Ivey et al. 2003),

yearly variation of pollinator density is an inextricable

component of pollination biology (Horvitz and Schemske

1990; Fishbein and Venable 1996; Waser et al. 1996;

Fenster and Dudash 2001; Ivey et al. 2003). As pollinator

importance fluctuates among years so it may be expected

that the dynamics of pollinator-mediated selection may also

fluctuate. In the case of S. caroliniana, if by comparison

with bumblebees, hawkmoth density increases one year

such that its importance values overlap or exceed bumble-

bees, then in those years we would predict detection of

significant selection on moth syndrome traits (e.g., tube

length or tube width). In other years selection may corre-

spond more to traits associated with bumblebee pollination

(e.g., sequential anther dehiscence). Spatiotemporal varia-

tion in the densities of important pollinators that are

selective agents may prevent the evolution of a strictly

specialized pollination system (Aigner 2001).

Perhaps then, it is not surprising that the flowers of S.

caroliniana exhibit traits concordant with the most com-

mon visitors. For example, the long narrow tubes, diurnal

anthesis, and lack of scent and nectar guides indicate a

diurnal moth syndrome (Faegri and van der Pijl 1979).

However, the syndrome is not exclusively moth as we

observe bumblebees readily forage for nectar located at the

base of the tubes (R. Reynolds, personal observation).

Sequential anther dehiscence has been noted to decrease

pollen loss from bumblebee grooming behavior (Harder

1990), thus it may represent an example of a bumblebee

syndrome trait for S. caroliniana. Since S. caroliniana

appears to possess floral traits consistent with both bum-

blebee and diurnal hawkmoth syndromes, it is particularly

relevant to estimate the mean and variance of pollinator

importance in order to make comparisons between the two

pollinators in a hypothesis-testing framework.

Estimation issues

The difference between the methods in their point and

interval estimates appeared to be associated with sample

size of the effectiveness dataset. The estimates were most

in agreement for bumblebees (n = 64) and least in agree-

ment for beeflies (n = 9), suggesting that small sample size

is a serious limitation to the use of both approaches. With

larger samples both approaches would yield narrower

confidence intervals if the variance was constant among

samples of differing size, because the variance of the mean

and hence the variance of the product of means is inversely

proportional to the sample size. Small sample size is

problematic using the exact variance formula for possibly

failing to meet the distributional assumption that the

sample means of visitation and effectiveness are each

normally distributed and therefore that pollinator impor-

tance has a product of normals distribution. While no

distributional assumptions are required, aside from the

observations being identically distributed, the bootstrap

statistic’s accuracy increases as the size of the samples

increases because the sampling distribution then more

closely resembles the population distribution (e.g., Cher-

nick 1999). Thus, the point and interval estimates from the

bootstrapping method may not represent the population

with small sample size.

The interval estimates calculated using the SE of the

exact variance formula are invalid if it cannot be safely

assumed the mean importance statistic has a product of

normals distribution, which is the case when the sample

with non-normal data (e.g., visitation rate) is small. Con-

sequently, the accuracy of the beefly importance measure

may be suspect, and additional larger pollen deposition
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samples should be collected to confirm the very low

importance estimates. The central limit theorem of math-

ematical statistics ensures that when large random samples

(the rule of thumb being [30 observations, e.g., DeVore

2000, p. 236) are taken the sample mean becomes normally

distributed regardless of the distribution of the individual

observations in the sample (Hogg and Craig 1995, p. 246).

If the observations are normal then the mean of the sample

is normal under any sample size, and the exact variance

formula may be used to estimate the SE for constructing

the confidence limits. Pollinator effectiveness data may be

modeled as normal if the samples have small variance and

a relatively large mean (negative values are unrealistic).

However, this may be an unusual case because pollen grain

deposition data can have high variance. It may be more

realistic to assume a Poisson distribution for the deposition

data, but this probability model may not be appropriate if

the data are overdispersed. One way to determine if the

data are normally distributed is by examining normal

quantile–quantile or probability plots (e.g., Devore 2000, p.

187), and Proc Univariate in SAS performs these analyses.

Therefore, ideally large samples of both visitation and

effectiveness should be taken to help satisfy the distribu-

tional assumptions required for constructing the confidence

intervals.

In addition to the problems associated with estimation

using small sample size, both methods assume no covari-

ance between visitation and effectiveness. Intuitively it

seems more likely that visitation and effectiveness should

positively covary if pollen is limiting seed production than

otherwise. In our study visitation rate was measured on

16 days, effectiveness on 10 days, and the two together for

bumblebee, were measured on 8 days. The correlation

between average visitation rate and pollen grain deposition

for those 8 days was close to zero (r = -0.021,

P = 0.9641) suggesting minimal covariance between the

two pollination measures in this 1-year study. However, for

the rarer pollinators, visitation and effectiveness data

coincided for 4 days and thus a reliable test of the

covariance assumption was not possible. Future studies of

pollinator importance using the simulation method or the

exact variance formula should incorporate a robust test of

the no covariance assumption. If there is substantial

covariance then it needs to be incorporated in the simula-

tions and/or exact variance formula.

Since both the simulation and exact variance formula

yielded similar results, and the exact variance formula is

far easier and less time consuming to implement, we sug-

gest using the SE of importance from the exact variance

formula and the appropriate critical values from the dis-

tribution of two normals table to construct the confidence

intervals. When estimating importance as the product of

three random variables an estimate of the SE is possible

using the exact variance formula, but to make a confidence

interval the distribution of the statistic must be known,

which is not as simple as using the published distribution

tables for the product of two normals (Meeker et al.1981).

Therefore, if the number of variables is greater than 2 the

simulation method is preferred. Furthermore, if the sam-

pling distribution of the mean of the two variables cannot

be safely assumed to be normal then the simulation

approach should be used.

Another method of modeling pollinator importance not

detailed here is using the framework of hierarchical

Bayesian modeling (e.g., Congdon 2003), which is gaining

increasing popularity in the ecological literature (Clark

2005). These techniques have proven useful in the demo-

graphic literature where vital rates exhibit significant

individual, and group level variability that present formi-

dable modeling challenges using classical techniques (e.g.,

Clark 2003). Pollinators may exhibit much individual

variability in visitation and pollen deposition, possibly

stemming from body size variation, or nutritional status,

and it is conceivable that pollinators may differ in depo-

sition rates by grouping them based on the gender of

flowers previously visited, flower plant density, and for-

aging time. Essentially the hierarchical framework may

allow a realistic exploration of the complex relations

feeding into variation in pollinator importance.

We applaud Larson (2005) and Bloch et al. (2006) for

recognizing the need to add SEs to their measures of pol-

linator importance, which motivated this paper, but we

argue that our point and/or interval estimates of importance

are more accurate. The mean and variance of both samples

of visitation and effectiveness are functions of the polli-

nator importance variance (Craig 1936; Haldane 1942;

Goodman 1960). Accordingly, scaling each effectiveness

observation by the mean (a constant:variance = 0) of the

visitation data or the visitation observations by the mean of

the effectiveness dataset (e.g., Larson 2005) underestimates

the variance of pollinator importance. Bloch et al. (2006)

incorporated a resampling procedure in which each

observation of visitation was multiplied by the mean of a

random subsample of the effectiveness dataset to generate

a single importance dataset. However, the method needed

to be repeated numerous times to generate a distribution of

mean importance in order to get an estimate of population

mean importance and confidence limits with the least bias

as possible.

The simulations may be extended to the product of sev-

eral random variables, and the statistical properties of the

product of k independent random variables are known

(Goodman 1962). For example one could weight the

importance value by its covariance with traits, which would

be indicative of its importance as a source of natural selec-

tion. Thus, if a rare pollinator that is effective exerts strong

Oecologia (2008) 156:325–332 331

123



selection on a particular trait it may be more important

evolutionarily than a pollinator that is frequent, effective but

exerts no selection on floral traits. Therefore, the metric

could measure the potential for specialization in the plant–

pollinator interaction (Schemske and Horvitz 1984).
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